Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 111(2): 22, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563421

RESUMEN

This study aimed to investigate the impact of heavy metals copper, cadmium, lead, aluminum and nickel, on the growth, physiology, metabolism, and cell cycle of Allium cepa L. Five treatments with increasing concentrations (0, 50, 100, 250, and 500 µM) were applied to the seeds. The results showed that the highest concentrations of copper and cadmium had phytotoxic and biochemical effects on the onion. Additionally, copper concentrations caused an increase in mitodepressive effect and chromosomal abnormalities. Aluminum also induced several chromosomal abnormalities. The study found that Cd > Cu > Pb > Ni > Al and Cu > Al > Ni > Pb > Cd had the highest phytotoxic and cytotoxic potentials, respectively. Furthermore, the UPGMA method revealed three divergent groups. These results suggest that heavy metals, especially copper, have a significant pollution potential when present in high concentrations.


Asunto(s)
Metales Pesados , Cebollas , Cobre , Cadmio , Aluminio , Plomo , Metales Pesados/toxicidad , Aberraciones Cromosómicas , Ciclo Celular
2.
Front Plant Sci ; 14: 1221346, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575938

RESUMEN

Aesthetic attributes and easy-to-grow nature of tropical cut flowers (TCFs) have contributedto their potential for increased production. The dearth of information regarding agronomic practices and lack of planting materials are the key hindrances against their fast expansion. Unconventional high-temperature storage requirements and the anatomy of the peduncle contribute topoor vase life performance, while troublesome packaging and transport due to unusual size and structureprimarily cause post-harvest quality deterioration. Nonetheless, the exotic floral structuresconsequently increase market demand, particularly in temperate countries. This boosts studies aimed at overcoming post-harvest hindrances. While a few TCFs (Anthurium, Strelitzia, Alpinia, and a few orchids) are under the spotlight, many others remain behind the veil. Heliconia, an emerging specialty TCF (False Bird-of-Paradise, family Heliconiaceae), is one of them. The structural uniquenessand dazzling hues of Heliconia genotypes facilitate shifting its position from the back to the forefrontof the world floriculture trade. The unsatisfactory state-of-the-art of Heliconia research and the absence of any review exclusively on it are the key impetus for structuring this review. In addition to the aforementioned setbacks, impaired water uptake capacity after harvest, high chilling sensitivity, and the proneness of xylem ducts to microbial occlusion may be counted as a few additional factors that hinder its commercialization. This review demonstrates the state-of-the-art of post-harvest research while also conceptualizing the implementation of advanced biotechnological aid to alleviate the challenges, primarily focusing on Heliconia (the model crop here) along with some relevant literature on its other allied members. Standard harvesting indices, grading, and packaging are also part of the entire post-harvest operational chain, but since these phases are barely considered in Heliconia and the majority of tropical ornamentals except a few, a comprehensive account of these aspects has also been given. The hypothesized cues to nip chilling injury, resorting to different bio-chemical treatments, nano-based technology, and advanced packaging techniques, may help overcome preservation difficulties and propel its transition from niche to the commercial flower market. In a nutshell, readers will gain a comprehensive overview of how optimum post-harvest handling practices can rewardingly characterize this unique group of TCFs as the most remunerative component.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...